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ABSTRACT 

The size and surface accuracy required of a 

parabolic reflector to obtain a given angular resolution 

in a radio telescope is discussed briefly. The use of 

grating and grid surfaces for the parabolic reflector is 

examined and the effects of conductor diameter and spacing 

is given. The effect of ohmic resistance in the reflector 

surface is analyzed. 

The loads, stresses, and deformations caused by 

gravity gradient in a membrane-like reflector for an orbiting 

radio telescope with a diameter of 1500 meters is analyzed. 

I. INTRODUCTION 

There is an ever increasing interest in the study 

of electromagnetic radiation emanating from various parts 

of the universe, both for practical reasons and to enhance 

our basic knowledge of the nature of things. The radiation 

which can be observed at the surface of the earth by radio 



telescopes lies in the region between 10 mc and 30,000 mc, 

since radiation outside this region is strongly absorbed 

by the atmosphere and requires the use of orbiting satel- 

lites which operate above the atmosphere. Orbiting radio 

antennas operating below 10 mc have, to date, been non- 

directive and furnish little information about the spatial 

distribution of low-frequency radiation. Because directiv- 

ity and wavelength are directly related to antenna size, 

extremely large structures will be required to fill this 

need. 

The work performed under the present NASA contract 

concerning the study of advanced structural concepts for 

space applications has included a number of investigations 

which are directly applicable to the design of a very 

large orbiting radio telescope employing a parabolic re- 

flector. The present report deals with two aspects 

of the parabolic reflector. The first is concerned with 

the reflection coefficient of grating and grid surfaces: 

the second with loads, stresses, and deformations of the 

surface as caused by the earth's gravity gradient. 
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II. REFLECTOR SIZE AND SURFACE ACCURACY 

The limiting angular resolution of a radio 

telescope (or an optical telescope) is almost entirely 

determined by the ratio of the telescope aperture to the 

wavelength, h, of the radiation being utilized. Although 

several definitions of resolution are used, a common and 

conservative one is the Rayleigh angle, eR' which is: 

A eR =D -700 = 1.22$ radian (1) 

where D is the diameter of the primary reflecting para- 

boloid. The diameter required to obtain various angular 

resolutions as a function of frequency is shown in Figure 1. 

The required D/h ratio vs eR is shown in Figure 2. 

In order that the above resolution be attained, 

that the antenna gain be maintained satisfactorily high, 

and that minor lobes be kept low, certain limits must be 

imposed upon the deviation of the reflector from the desired 

or nominal parabolic surface. Thetolerance on parabolic 

reflectors is usually specified by defining the RMS deviation 



to be somewhere between h/16 and h/32, although 

antennas give usable results for RMS errors as large as 

n/8 (or slightly larger). According to Reference 1, the 

principal result of reflector errors of this magnitude is 

to increase the minor-lobe level and pattern minima. Gain 

is correspondingly reduced, but beam-angle widening, while 

inevitable, is not as significant. The required ratio of 

diameter to RMS deviation as a function of angular resolution 

is also shown in Figure 2. 

III. REFLECTION OF RADIO WAVES BY 

GRID AND GRATING STRUCTURES 

A. GENERAL DISCUSSION: 

As is shown in Reference 2, there are considerable 

structural-weight advantages in using a network rather than 

a continuous sheet or membrane for the structural component 

of a very large radio reflector in orbit. The network would, 

of course, be used to support the reflecting surface and, 

since the required area density of electrically conducting 

material turns out to be very low for a continuous sheet of 
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conductor, it becomes apparent that the reflecting surface 

should be applied only to the structural network rather than 

as a continuous film. The results of an investigation of 

the reflecting properties of a conducting gridwork are re- 

ported below. 

The geometric and ohmic reflection coefficients 

are examined separately, the geometrical coefficient being 

determined on the basis of infinite conductivity in the 

network elements, and the ohmic reflection coefficient on 

the basis that the conducting material is spread into a 

uniform conducting sheet. The result of having both types 

of loss simultaneously has not been investigated but it is 

reasonable to assume that, if the individual reflection 

coefficients are each near unity, the overall reflection 

coefficient is approximately the product of the two. 

GEOMETRICAL REFLECTION COEFFICIENT: B . 

A unidirectional grating of conductors can be 

used to reflect radio waves if the grating is oriented so 

that a grating element lies in the plane determined by the 

E vector of the incident wave and the normal to the grating 

5 



"surface" at that point. For receiving a signal of random 

polarization, this may mean reducing the received power by 

one-half if the detector itself could 

of arbitrary polarization. According 

amplitude reflection coefficient, R,, 

respond to signals 

to Reference 3, the 

at normal incidence, 

of an infinite grating of perfectly conducting circular 

cylinders is 

R, = - 1 

1 i2b 
when b (2) 

xl nb 
?/PC1 

-- 
nd 

where: 

Ra = amplitude reflection coefficient 

b = spacing between centers of cylinders 

d = diameter of cylinder 

A = wavelength 

i = -1 J 

It follows that the power reflection coefficient, R, is: 

R= 1 

and is henceforth referred to as the geometrical reflection 

coefficient. 
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The geometrical reflection coefficient is shown 

in Figure 3 as a function of,wavelength-to-spacing ratio 

for various values of spacing-to-diameter ratio. In Figure 4, 

the wavelength-to-spacing ratio required to give various 

values of geometrical reflection coefficient is shown vs 

the spacing-to-diameter ratio. It can be seen that grating 

spacings as low as h/8 give reasonable reflection coefficients 

when the wires are not too small compared with the spacing, 

but that spacings as low as A/32, or less, might be desirable 

for wires of very small size compared to the spacing. 

Two such gratings at a reasonable angle to each 

other (greater than 30°, for instance) would reflect waves 

of any polarization even though the two gratings were not 

electrically interconnected. 

If two coplanar infinite gratings were electrically 

interconnected at the nodes and subjected to a plane wave 

at normal incidence, symmetry of the fields about each node 

would preclude a net current from one grating element to 

another. The electrical connections would therefore have 

very little effect on the fields except in the regions 

very close to the nodes. A similar conclusion seems to be 



in order for the conditions which exist when a grid surface 

is used as a parabolic reflector, although no verification 

of this conclusion has been located in the available 

literature. 

C. OHMIC REFLECTION COEFFICIENT: 

A grid or grating which would be a good microwave 

reflector if the elements were perfect conductors, will be 

a poor reflector if the elements are made of material with 

sufficiently high resistivity. 

In order to determine the effects of resistance in 

the reflector, the reflection .of a plane wave at normal in- 

cidence to a very thin infinite sheet has been analyzed. 

The plane was considered to have the surface conductivity, 

uS- 
The ratio, R', of reflected to incident power is 

given by: 

R’ = (*“:z:szJ2 (4) 

where: 

R' = reflection coefficient due to ohmic loss 
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QS = surface conductivity 

z, = po/eo)* = characteristic impedance 

(of free space) = 377 ohms 

Consider a grating of wires oriented along the 

E vector of the incident wave and of such a spacing and 

diameter that the grating would be a good reflector if 

the wires were of infinite conductivity. If the wires are 

solid conductors or have a conductive coating, the con- 

ductivity of an equivalent conducting sheet is 

tT lrd6 = u.- 
S b 

for 6 < < d (for solid) 

or for 6 < < t (for coating) 

(5) 

where: 

= skin depth (6) 

uS = equivalent surface conductivity 

u = conductivity of wire (or coating) 

material 

d = diameter of wire 

b = wire spacing 

t = coating thickness 

A = wavelength 



P = permeability 

C = speed of light 

If the conductive coating is thin compared with the skin 

depth 

lrdt bs = q- 
b for t<< 6 (7) 

The skin depth in copper is 

6 cu = 3.82 x lO-6 A' meter (8) 

and is shown vs A in Figure 5. For a "thick" conductive 

coating or a solid conductor, the spacing-to-diameter ratio 

vs wavelength is given for various ohmic reflection coeffi- 

cients, R', in Figure 6. For a "thin" conductive coating, 

the spacing-to-diameter ratio vs coating thickness for 

various R' is given in Figure 7. 

D. DISCUSSION: 

Sufficient information has been collected, or 

developed herein, to define, for preliminary design purposes, 

the reflecting properties of a grid surface to be used as 

10 



the reflector for an orbiting radio telescope. 

As an example of their application, suppose that 

we wished to design an antenna with a network reflecting 

surface for operation at 4 megacycles (75 meters) with 

an overall reflection coefficient equal to 0.90 . The 

requirement could be met by selecting the geometrical and 

ohmic reflection coefficients each to be equal to 0.95 . 

The diameter of the structural fibers in the gridwork is 

likely to be determined by other than electrical requirements 

(such as resistance to buckling by compressive loads). 

suppose that the fiber diameter as determined by these 

requirements is 0.4 mm (0.016 inches). Then, in order 

to obtain a geometrical reflection coefficient equal to 

0.95 we have, from Figure 4 

74 -=6(-j, $= 
b 3000, b = 1.25 meters 

Also, from Figure 7, the required surface coating of copper 

is 0.0035 mm thick. 

11 



IV. LOADS, STRESSES AND DEFORMATIONS OF 

AN ORBITING MEMBRANE-LIKE REFLECTOR 

A. PRELIMINARY DISCUSSION: 

In order to determine the magnitude of deforma- 

tion that the earth's gravity gradient will have upon the 

reflector for a very large orbiting radio telescope, 

certain preliminary analyses of the problem have been 

made. By assuming that the reflector is a spherical cap, 

rather than a paraboloid of revolution, the analysis is 

considerably simplified. Further, the network structure 

is approximated by a continuous isotropic membrane and it 

is assumed that just enough constraint is applied to the rim 

of the spherical cap to make the system statically determin- 

ate. 

During the course of the analysis, the problem 

is restricted to a spherical diameter of 1800 meters, an 

opening diameter of 1500 meters, and a circular orbit at 

an altitude of 550 statute miles. 

12 
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B. EXTERNAL FORCES FROM GRAVITY GRADIENT AND SPIN: - 

If an earth's satellite is in a circular orbit, 

the various points within the satellite are subjected to 

gravity fields of slightly different magnitude and direction. 

The various points are also subject to different accelera- 

tions because of the spin which the satellite may have. As 

a result of these two causes, certain structural forces 

must be supplied to each point in order to maintain the 

relative positions of the various points, since the satellite 

is assumed to have some specified form. 

Let: 

wO 
- 
w 

- 
r 

- 
PO 

- 
P 

5 

= angular velocity of circular orbit 

= spin vector of satellite 

= position vector of point relative to c.g. 

of satellite 

= position vector of c.g. of satellite relative 

to center of earth 

= position vector of point relative to center 

of earth 
- - 

= component of r normal to w 

13 



R2 
- 

= component of r normal to PO 

(i.e. the horizontal component of y). 

Ap =P-P~ = vertical position of point 

relative to c.g. of satellite 

iPo =po - 
PO 

= unit vector in p, direction 

AFo = acceleration (of point) which is caused 

by structural forces 

These various relationships are shown in Figure 8. 

Under the condition that the gravity gradient 

generates no net torques on the satellite (this condition 

is satisfied for a number of special conditions) the 
- 

acceleration, Af,, which is caused by structural forces 

has been shown to be 

ATo 2 x2 - 2Api I 2- =Cd 0 PO - w Rl (9) 

Thus the structural forces which are supplied per unit of 

mass at each point in the structure can be divided into 

three components which are: 

4 an outward-directed horizontal force of magni- 

tude wo2Ah (where Ah is the horizontal 

14 



displacement from the c.g.) which results from 

the gravity gradient, 

b) an inward-directed vertical force of magnitude 

2coo2Ap which results from gravity gradient, and 

cl a force of magnitude w2Rl, directed toward the 

inertial spin axis (where Rl is the distance of 

the point from the spin axis) and resulting from 

inertial spin. 

If a spherical cap (a spherical shell of radius 

RS truncated by a single plane) is orbited with its axis 

of symmetry normal to the orbital plane, the components 

of the acceleration caused by the 

structural forces can be expressed in a spherical coordinate 

system in which the polar axis is coincident with the axis 

of symmetry of the cap, as is shown in Figure 9. Letting 

iu , iv , and i be unit vectors in the direction of the 
W 

parallel circle, the meridian, and the outward normal to 

the surface, respectively, and e and 9 be the longitude 

and colatitude, respectively, and 9 be the value of + 

at the rim (at the circle of truncation) then: 

15 



ATo = wO 2RS 

2 

1 p sin 01 sin 2 8 fiu 

[I (1 + cos *) sin+ - 5 sin 2* 
II 

+ II -$sin 24 1 -L 

cos 20 I 
(10) 

I c 1 2 - (1 + COSQ,) cos 24 cos cos Q + 20 $ cos 20 1 1, 

+ 
[ 

3+ -- 
2 $ 1 

Then p = - m"afo 

where: 

P = vector external force per unit of area 

m '1 = mass per unit of area 

Using the nomenclature of Reference 4: 

(11) 

2 (1 + cos (p) sin (0 - $ sin 2c$ 
m"WO R, 

P@=- (124 2 

1 cos 2 0 1 

P, = - m"w{Rs I[3 sin ~$3 sin 2 01 (1-1 
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1 - - 2 (1 + 
2 

cos 4) cos 4 + 
m"w, 

$ cos 20 1 
p,=- 

R, 
2 (12c) 

-- 31 C - 
2 

cos 24 1 cos 20 

As a concrete example, let the opening diameter 

of the spherical cap be 1500 meters, and let the focal 

ratio (as defined at the center of the spherical cap) be 

0.3 . For such a cap 

f = 0.5Rs 

f/D = 0.3 

RS 
= 0.6D = 900m = 2950ft 

cos 4 = 0.553 

sin C$ = 0.833 

The external force components p9 , p, , and p, , each 

contain a term which varies sinusoidally with 28, and two 

of them contain a term which is independent of e . 

P9 = PQO + PQ2 cos 2 e (134 

Pe = pea + pe2 sin 2 0 (13b) 

pr = pro + pr2 cos 20 (13c) 

wher.e, for our particular example, 

P@ = - K (1.553 sin $I - 1.500 sin 2~4) (144 

pea = 0 (14b) 

17 



-Pro = - K (0.500 - 1.553 cos C$ + 1.500 cos 24) (14c) 

p+2 
= K (3 sin6 cos +) (14d3) 

P = e2 
- K (3 sin@) We) 

P r2 
= K (3 sin2 4) (14f) 

2 
K = 

m”wo R, 
(15) 

2 

C. MEMBRANE STRESSES: 

By the methods used in Reference 4, the normal 

and shearing stresses in the membrane can be found under 

the assumptions that the meridianal component of stress 

vanishes at the rim. Both of these conditions at the 

rim follow from the assumption that the system is made 

statically determinate by a system at the rim, which can 

apply forces only in the plane of the rim. 

ponents of stress are 

a+ = UOo + a+2 cos 2 0 

'+e = ~~~~ sin 28 

u =U +6 cos 20 8 90 82 

Then the com- 

(164 

(16b) 

(16~) 

where: 

%o = c C 0.345 
(1 + cos$) - oo222 1 Wd 
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and 

c - c ( 0.345 u = 
80 1 + cost+) 

+ 0.345 cost -; 

%2 = - c [ 1.608 
(1 + cos+)2 

+ 0.444 

cos2$ 1 
2 -- 
3 3 

TQe2 = c [ 

1.608 2 
(1 + co& - 3 cosb I 

[ 
1.608 u = C 2 2 

cos$)2 - 82 (1 + 3 cos + 1 

C 
9RsK 

= = 2 m"w2R2 
2t 4tos 

= $p";Rz 

t = thickness of membrane 

p = density of membrane material 

For the circular orbit where w. = 10 -3 rad/sec (which 

corresponds to an orbital altitude of approximately 550 

statute miles) and for R 
S 

= 2950 feet, 

C lbf/in2 - = 7.31 lbm,in3 P 

(17b) 

(17c) 

(17d) 

We) 

(18) 

(184 

The values of the above stress components are shown as 

functions of 4 in Figure 10. Also shown is an additional 

stress component, u 83' which would be added to u if 80 

the satellite were spinning at an angular frequency equal 

19 



to the orbital angular frequency. 

D. DEFORMATIONS: 

According to Reference 4, the differential equation 

which expresses the meridional deformations of the spherical 

surface is 

d2vn 
sin dvn 

d02 
20) -- 

dd' 
cos + sin + + vn (1 - n2) 

= 
%sy+en -- sin 24 

where the meridional deformation, v, is 

v= C vn 

(19) 

(20) 

n=o 

and the n indicates that the particular component of v 

corresponds to the particular set of uIs which vary with 

0 as sin ne and/or cos ne . Also the component of de- 

formation in the direction of the outward normal to the 

surface is 

W 
dvn 

n 
=Rt -- 

s +n d+ (21) 

20 



and the component of deformation in the direction of the 

parallel circle is 

dvn 
un = > (Cen -C,,) sin + - i - - 

d@ 
sin+ (22) 

where by Hooke's law: 

(On =E 1 (=$)n - yenI 

t - t qn en 
=(1 (= 

E an - =e n) 

E = Young's modulus 

u = Poisson's ratio 

For n = 2 , the total solution to the equation for 

(23) 

(24) 

u is 

v2 = D 

A' - 0.804 2 
(1 - co& @) + 3(1 - cos $1 

- $ cos Q 

- 1 cos 29 1 sin 3a 
6 (1 + cos $)2 

t 0.536 0.804 2 
(1 + cos c#)3 - (l+ cosr$)2 - 3(1+ cos+) 

- f cos Q + $ cos 
2+ 1 b 

(lS-in:os ($)2 

(25) 
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where 

R,C(l + Y) 9 Rs2K(1 + P,) 3 2 
D= 

9 Rscqo ~(1 + v) =-. =- 
E 2 Et 4 E .c (26) 

a 

In order to evaluate the properties of the membrane 

of which the spherical cap is assumed to be formed, it is 

now assumed to be a network of equilateral triangles of 

identical members of unidirectional bundles of fiberglas 

filaments. Under these conditions 

t = average "thickness" of net 

E = Em/3 

Em = longitudinal tensile modulus of fiberglas 

members 

1 y=- 
3 

The following properties are assumed: 

P = 0.08 lbm/in3 

Em = 7 x 1061bf/in2 

“O 
= 10-3 rad/sec 

RS 
= 2950 ft 

Under these conditions 
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D= 0.000985 ft = 0.0118 in 

It has already been assumed that the rim constraint 

for n = 2 is such that u4,(0) = 0 l It is now further 

assumed that the rim constraint is capable of supplying 

only an in-plane shear stress and that the constraint is 

of such a nature that the u2 displacement of the constraint 

is proportional to ?$m 2 at each point on the rim. Any 

passive constraint will have a positive ‘l&e2 associated 

with a negative u2 and vice versa. 

Let the rim constraint be formed by a family of 

filaments in the form of squares, as shown in Figure 11. 

Such a system is capable of supplying the required in-plane 

shear stress, since each point is connected to two other 

points with the same shear stress because of the sin 20 

variation of uqm2 l 

Let a length on the rim of the spherical cap con- 

tain the termination of two orthogonal filaments of the 

rim-constraint system, as is shown in Figurel2, and let 

23 



t2 be the average thickness of filaments in each of the two 

directions. Consider one-half of each length to be associated 

with the region ds . Each of the two half filaments has 

i-5 the length 4 l D and the cross-section A, = t2 l ds 42 / , 

where D = opening diameter of reflector = RS 
/ 0.6 - 

Then 

6 E2A, = 
t2ds 

l E2* - 
4-F 

(27) 

dF l.2u2E2t2 

ds= R, 

Since dF is the force of the membrane on the constraint, 

t2T+32 (9) =-E 

Evaluation of '40 2 and 
u2 

in the above yields 

A’ = 1.081 - 

If the filaments in the rim constraint were in- 

elastic, then E2t2 = a and 
Et 

l.2u2E2t2 
= - 

RS 

at the rim and substitution 

0.7765 + 
(28) 

A' = - 1.081. 
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However, when E2t2 - = 0.5 (which corresponds to a con- 
Et 

straint-system density at the rim of l/3 the reflector 

density if the reflector is made of equilateral triangles 

of equal filaments of the same material), then A' = - 2.634. 

The most important deformation of a reflector is 

the component, w, normal to the surface, and w2 has 

been plotted in Figure 13 for the two values of A' obtained 

above. 

E. ELASTIC STABILITY: 

It will be observed from Figure 10 that a consid- 

erable portion of the spherical cap is in a state of biaxial 

compression due to the effects of gravity gradient. Although 

the magnitudes of the stresses are very low, the diameter 

of the structural members required to satisfy electrical 

requirements is also very low, so that failure by elastic 

instability is likely to be an important design criterion. 

Buckling may occur in one of two ways. The first 

consists of Euler buckling of an individual element which 
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mayI for simplicity, be assumed to be pinned at its ends. 

The buckling stress is obtained from the formula 

r2EI 
p = g2- (29) 

where: 

EI = bending stiffness of element 

A = cross-sectional area of element 

e = length of element 

The second type of buckling failure is general 

instability. The exact determination of the buckling condi- 

tion for a non-uniform stress distribution, such as that 

shown in Figure 10, is difficult. In the present instance, 

however, the diameters of structural members are very small 

compared to the radius of the spherical cap, so that the 

elementary formula for the buckling of a sphere due to 

uniform pressure (see Reference 4, p. 477) can be used, 

provided that the stress predicted by the formula is inter- 

preted as the maximum compressive stress occuring anywhere 

on the spherical surface. The formula, as modified to apply 

to discrete members, is 
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(30) 

where I and A have the same meaning as in equation (29). 

For the case of round fibers with diameter, d, 

for equations (29) and (30) become 

Ed 
"2 = 2R 

S 

(31) 

(32) 

These formulas may be used to size the members of 

the gridwork. Fiber diameter, d, is determined by equa- 

tion (32). Mesh spacing is then determined by equation 

(31) - As an example,consider an antenna with the following 

properties: 

Opening diameter of spherical cap = 1500 m = 4920 ft 

Radius, Rs = 2950 ft 

Material: aluminum ( E = lo7 , P = 0.1 lb/in3) 

Orbital altitude: 550 statute miles (w. = 10m3 rad/sec) 

From Figure 10, the maximum compressive stress at any point 

is approximately 
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u max = 2.3 x 0.10 = 0.23 psi 

The fiber diameter, as determined by equation (32), is 

d 
d = 2Rs. - max = 2 x 2950 x 12 x - 0.23 = 

E 107 
0.00163 in 

The element length, as determined by equation (31) is 

a f& x 0.00163 = 26.8 inches 

We may now use the results of sections B and c 

to determine whether the reflection coefficient of the 

gridwork is adequate. The distance between parellel fibers, 

b, is equal to yT* 1 = 23.2 inches. The spacing to 

diameter ratio b/d is equal to 14,200. At a frequency of 

ten megacycles the wavelength to spacing ratio is 44. 

From Figure 4 the geometrical reflection coefficient is 

approximately equal to 0.88 . From Figure 6, using the 

facts that the wavelength at 10 megacycles is 30 meters 

and that the conductivity of copper is about 1.6 times 

the conductivity of aluminum, it is seen that the ohmic 

reflection coefficient is about 0.95 . 
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Further study is required to determine whether or 

not these reflection coefficients are adequate. The 

overall reflection coefficient could be raised above 0.90 

by reducing the mesh spacing, 1, to one foot. 

It is of interest to compute the structural weight 

of the spherical cap antenna. The weight per unit area is 

1 (Weight of three elements) 
w” = z (Area of mesh triangle) 

which, for aluminum fibers of 0.00163" diameters and one 

foot mesh spacing, is equal to 0.867 x lO-5 lb/ft2 . The 

area of the spherical cap is 

A SC = 2nR; (1 - cos @) = 27r x (2950)2 (1 - 0.553) 

= 24.4 x lo6 ft2 

The total structural weight of the antenna is 

W = W" Asc = 0.867 x lO-5 x 24.4 x lo6 = 212 lb 

Conditions other than those considered here will undoubtedly 

increase the structural wieght, perhaps by a large factor. 

For comparison, the weight of an aluminum membrane 
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that satisfies the general elastic instability requirement 

will be computed. The required thickness (see Reference 4, 

p. 477) is 

t = \13(1- l RsF = 0.00135 in 

The weight density is 

W" = Pt = 0.1 x 0.00135 x 144 = 0.0194 lb/ft2 

The total weight is 

W = W" Asc = 0.0194 x 24.4 x lo6 = 473,000 lb 

It is clear from this calculation that solid membranes are 

not feasible structures for orbiting antennas of the size 

considered here. 

F. DISCUSSION OF RESULTS: 

In the spherical cap considered herein (with 

an opening diameter of 1500 meters) the equivalent 

membrane stresses caused by gravity gradient are 0.49 psi 

in tension, and 0.32 psi in compression, for a material 

with a density of 0.1 lb/in3 (aluminum). 

If a fiberglas network structure is used to form 
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the spherical cap, the peak second harmonic deflection, 

w2 # normal to the surface as caused by gravity gradient, 

is only 2.5 x lO-3 ft or 0.030 in. Although the sym- 

metrical displacement, w 0 ' normal to the surface has not 

been evaluated, it is expected to be lower than w2 . 

On the basis of buckling instabilities, the 

total structural weight, using aluminum members, is only 

212 lb. 

Thus, the loads imposed by gravity gradients 

upon the 1500-meter reflector, when operating in the low 

megacycle range and orbiting at an altitude of 550 

statute miles, will cause only negligible displacement 

normal to the surface and will not necessitate large 

structural weights in order to prevent buckling instabili- 

ties from compressive loads. 

Astro Research Corporation 

P. 0. Box 4128, 

Santa Barbara, California, October 15, 1965 
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